代表性成果: [1]Yingying Su, Shan Liang, Jingzhe Li, Taifu Li, Cheng Zeng. Nonlinear fault separation with redundancy process variables based on FNN in MKFDA subspace[J], Journal of applied mathematics, 2013, 2014(12):1-9. (SCI源刊: 000331791800001) [2]Yingying Su,Taifu Li, Debiao Wang, Xinghua Liu. Modeling and Optimization in complex systems based on computational intelligence[J]. Kybernetes,2012,41(9):1235-1243 (SCI源刊:000312434000010) [3]苏盈盈,李太福,易军,胡文金,廖志强,徐敏.基于KICA子空间虚假 邻点判别的软传感器变量选择方法[J],机械工程学报,2015,51(4):15-21.(一级学报,EI:20151600746235) [4]He Y,Su Y*, Wang X, et al. An improved method MSS-YOLOv5 forobject detection with balancing speed-accuracy. Frontiers in Physics, 2023,10: 1349. (SCI源刊) [5]Yingying Su, Hao Zhou, Nengyang Zhou, Cuiying Li, Xiaofeng Wang,Debiao Wang. Soft computing detection method for remaining capacity of lead acid battery[C], ICCC 2018,p2631-2634,2018(EI20193407338711) [6]苏盈盈,主成分分析方法及其核函数在模式识别中的应用-基于MATLAB 或C++语言的实现[M],中国水利水电出版社,2020.12 [7]Yingying Su, Shan Liang, Taifu Li, Cheng Zeng. The nonlinear feature extraction with parsimonious components based on multiple kernel function[J]. Innovative Computing, Information and Control Express Letters, 2013,7(3):785-791.(EI源刊:20131316153803) [8]Y.Su,Q.Zhang, Y.Deng,Y.Luo*,X.Wang and P. Zhong Steel Surface Defect Detection Algorithm based on Improved YOLOv4[C], 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 2022, pp.1425-1429.(EI已检索) [9]苏盈盈,张气皓,罗妤,周昊,何亚平,阎垒.基于AE-LSTM混合神经 网络模型的排放预测[J].西南师范大学学报(自然科学版),2023.4,48(4),23- [10]苏盈盈,刘兴华,康东帅,李太福.多层线性神经网络与单层线性神经 网络的等效性研究[J],西南师范大学学报(自然科学版),2017,42(12):105-(CSCD科技核心期刊) [11]苏盈盈,李翠英,王晓峰,康东帅,刘君.风电场短期风速的C-C和ELM 快速预测方法[J].电力系统及其自动化学报,2019,31(07):76-80+87.(CSCD科技核心期刊) |